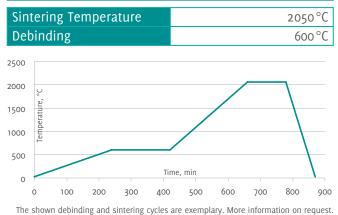
Grain Size Distribution

d ₁₀	< 25 μm
d ₅₀	~ 70 µm
d ₉₀	> 190 µm
Specific Surface Area	-

Chemical Composition

SiC	99.7 - 99.9 %
Al_2O_3	< 0.1 %
Ca0	< 0.1 %
Fe ₂ O ₃	< 0.1 %

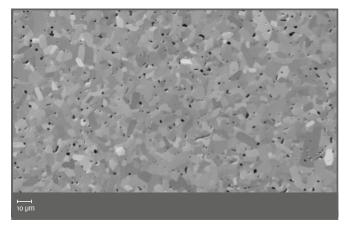

These properties are typical but do not constitute specifications

Physical Properties

Green Density ¹⁾	1.8 g/cm³
Sintered Density ¹⁾	3.13 – 3.15 g/cm³
Apparent Density	0.75 – 0.80 g/cm³
Flexural Strength	~ 420 MPa
Shrinkage	~ 17.5 %
Δm ²⁾	~ 10 %
Color	black

1) at 200 MPa 2) weight loss after sintering

Recommended Sintering Conditions



Applications

Two Step Rings, Simple Ring, for Cold Isostatic Pressing, Green Machining, Parts with Complex Geometry

Advantages

- Excellent powder flowability and pressing behavior for low variance of die filling and green density.
- High dimensional accuracy after sintering, low dimensional scrap rate.
- Improved binder system with non-sticking properties on die surface. Reduced down time for mold cleaning.
- Formulation with eco-friendly carbon precursor. No use of phenolic resin. Clean and safe debinding process without toxic emissions. Reduced deposits inside debinding equipment provide for reduced maintenance down time.
- Reduced pressure to obtain the required green density. Reduced cost factor related to tool wear.
- High purity Silicon Carbide for excellent material performance.

Micro section

