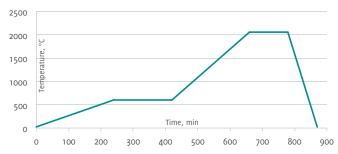
Grain Size Distribution

d ₁₀	< 25 μm
d ₅₀	~ 70 µm
d ₉₀	› 190 µm

Chemical Composition

SiC	> 99.7 - 99,9 %
Al_2O_3	< 0.1 %
Ca0	< 0.1 %
Fe ₂ O ₃	< 0.1 %

These properties are typical but do not constitute specifications

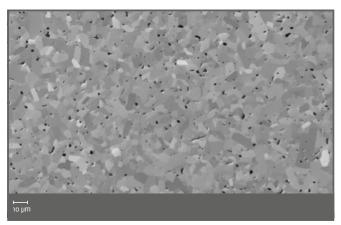

Physical Properties

Green Density 1)	1.8 g/cm³
Sintered Density 1)	3.13 - 3.15 g/cm³
Apparent Density	0.75 - 0.80 g/cm³
Flexural Strength	~480 MPa
Shrinkage	17.5 %
$\Delta m^{2)}$	10 %
Color	black

1) at 200 MPa 2) weight loss after sintering

Recommended Sintering Conditions

Sintering Temperature	2050°C
Debinding	600°C


The shown debinding and sintering cycles are exemplary. More information on request.

Applications

Two Step Rings, Simple Ring, for Cold Isostatic Pressing, Green Machining, Parts with Complex Geometry

Advantages

- Excellent powder flowability and pressing behavior for low variance of die filling and green density.
- High dimensional accuracy after sintering, low dimensional scrap rate.
- Improved binder system with non-sticking properties on die surface. Reduced down time for mold cleaning.
- Formulation with eco-friendly carbon precursor. No use of phenolic resin. Clean and safe debinding process without toxic emissions. Reduced deposits inside debinding equipment provide for reduced maintenance down time.
- Reduced pressure to obtain the required green density. Reduced cost factor related to tool wear.
- High purity Silicon Carbide for excellent material performance.

Micro section

