Grain Size Distribution

d_{10}	$<20 \mu \mathrm{~m}$
$\mathrm{~d}_{50}$	$\sim 80 \mu \mathrm{~m}$
$\mathrm{~d}_{90}$	$>160 \mu \mathrm{~m}$

Chemical Composition

$\mathrm{Y}_{2} \mathrm{O}_{3}$	$99,999 \%$
SiO_{2}	$<0.001 \%$
$\mathrm{Na}_{2} \mathrm{O}$	$<0.043 \%$
$\mathrm{Fe}_{2} \mathrm{O}_{3}$	$<0.005 \%$

These properties are typical but do not constitute specifications

Physical Properties

Green Density ${ }^{1)}$	$2.98 \mathrm{~g} / \mathrm{cm}^{3}$
Sintered Density ${ }^{1)}$	$4.98 \mathrm{~g} / \mathrm{cm}^{3}$
Apparent Density	$1.6 \mathrm{~g} / \mathrm{cm}^{3}$
Flexural Strength	-
Shrinkage	$\sim 20 \%$
$\Delta \mathrm{~m}^{2)}$	$\sim 13 \%$
Color	white

1) at 200 MPa 2) weight loss after sintering

Recommended Sintering Conditions

Sintering Temperature	$1600^{\circ} \mathrm{C}$
Debinding	$600^{\circ} \mathrm{C}$

The shown debinding and sintering cycles are exemplary. More information on request.

Advantages.

- Excellent powder flowability and pressing behavior for low variance of die filling and green density.
- High dimensional accuracy after sintering, low dimensional scrap rate.
- Improved binder system with non-sticking properties on die surface. Reduced down time for mold cleaning.
- Formulation with eco-friendly carbon precursor. No use of phenolic resin. Clean and safe debinding process without toxic emissions. Reduced deposits inside debinding equipment provide for reduced maintenance down time.
- Reduced pressure to obtain the required green density. Reduced cost factor related to tool wear.

Applications

Semiconductor Applications, for Cold Isostatic Pressing, Green Machining, Parts with Complex Ceometry

